Modeling the ecological effects of endocrine active compounds on fish: Scaling from individuals to populations

Kenneth A. Rose¹, Cheryl A. Murphy², Peter Thomas³, Lee A. Fuiman³, Maria C. Alvarez³, Ian D. McCarthy⁴, and Sandra L. Diamond⁵

¹Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA USA

²Department of Zoology, University of Toronto, Toronto, Ontario, Canada ³Marine Science Institute, University of Texas, Port Aransas, TX, USA ⁴School of Ocean Sciences, University of Wales-Bangor, Anglesey, UK

⁵Department of Biology, Texas Tech University, Lubbock, TX, USA

Acknowledgements

This research has been supported by a grant from the US Environmental Protection Agency's Science to Achieve Results (STAR) Program (to University of Texas), and by a grant from the STAR Estuarine and Great Lakes (EaGLe) program through funding to

the Consortium for Estuarine Ecoindicator Research for the Gulf of Mexico (*CEER-GOM*)

This research is funded by

U.S. EPA - Science To Achieve
Results (STAR) Program

Grant # R82945801

US EPA Agreement (*R 82945801*)

Methods - Outline

Scaling Biomarkers to Reproductive Endpoint

Gonadotropin - Driving variable

Model - Series of Ordinary Differential Equations

$$\frac{dT}{dt} = \text{synT}(\text{GtH}) - \text{synE2}(\text{T})$$

$$\frac{dE2}{dt} = \text{synE2}(\text{T}) + k_1[\text{E2ER}] - k_1[\text{E2}][\text{ER}]$$

$$\frac{dER}{dt} = -k_1[\text{E2}][\text{ER}] + (k_1 + 2k_2)[\text{E2ER}]$$

$$\frac{dE2ER}{dt} = k_1[\text{E2}][\text{ER}] - (k_1 + k_2)[\text{E2ER}]$$

$$\frac{dVtg}{dt} = k_2[\text{E2ER}]$$

Baseline Simulation

PCB Simulation

- Croaker exposed to PCBs have GtH levels that are 38% of control fish
- Multiply GtH driving variable by 0.38

PCB Mixture Simulation

Cadmium Simulation

Cadmium increases GtH secretion by 295%

Multiply GtH driving variable by 2.95

Cadmium doubles the rate of testosterone production

Multiply testosterone synthesis function by 2.0

Cadmium Simulation

ATLANTIC CROAKER Thomas, 1989. Mar. Environ. Res. 28:499-503

Field Evaluation

Determine if biomarkers measured in field indicate exposure to hypoxia

- Simulate cumulative vitellogenin production with decreasing estradiol
- Compare to laboratory studies
- Compare to fish undergoing gonadal development that were collected from sites with varying degrees of hypoxia

Field Evaluation

Methods - Outline

Fish Behavior

Behavior often used as a toxicological endpoint

- Effects of contaminants on fish behavior well documented
- Difficult to quantitatively extrapolate contaminant effects on fish behavior to the population level

Overview of Approach

- Video-taped croaker larvae responding to fake predator attacks (survival skills)
- Control, low dose PCBs, low and high dose MeHg conditions
- Experiment with red drum where measure survival skills and also success with a real fish predator
- Statistical model: relate survival skills of croaker to probability of escaping a real predator

MeHg Laboratory Results

PCB Laboratory Results

2. Statistical Models

- Regression Tree
 - Relate survival skills to probability of escaping a real predator by recursively partitioning data into a hierarchial succession of nodes

- Logistic Regression
 - Relate swimming speed to the probability of escaping a predator using logits

Regression Tree

Adapted from Fuiman et al , in press

Logistic Regression

Results: Statistical Models

Create multipliers for each developmental stage and each treatment (control, low or high) for swimming speed and the probability of escaping a predator e.g.:

3. Individual Based Model

IBM: Baseline Results

IBM: Summary

4. Matrix Projection Model

Use a matrix projection model to predict population-level responses to endocrine disrupting chemicals from laboratory studies

Matrix Projection Model

Classic formulation:

Stage duration and mortality are used to calculate P and G

Overview of Approach

- Two Atlantic croaker populations with two nursery areas
 - Mid-Atlantic Bight North Carolina and Virginia
 - Gulf of Mexico Louisiana and Texas
- Two contaminants
 - PCBs
 - MeHg
- Different exposure scenarios
 - Contaminants eliminated after first spawning event
 - Contaminant effects last lifetime of fish
 - Percentage of individuals from a nursery area affected

Gulf of Mexico (GOM)

Mid-Atlantic Bight (MAB) Age 12 11 10 9 8 7 6 5 4 3 2 1 **Annual** Egg G **Atlantic Bight** Yolk-sac **Daily** July Ocean Larva Early Juvenile Late Juvenile Estuary Larva Dec Ocean Larva Estuary Larva Early Juvenile Late Juvenile G North Carolina **Transition** July Estuary Larva Early Juvenile Late Juvenile Ocean Larva Dec Ocean Larva Estuary Larva Early Juvenile Late Juvenile **Biweekly** Monthly Virginia Transition

Baseline Simulations

Reproductive output:

Baseline Simulations

Density dependence: spawner-recruit relationships

Contaminant effects

PCBs

- Fecundity is reduced by 65% (Lab)
- Egg survival is reduced by 81% (Lab)
- Ocean larva survival reduced by 47% (IBM)
- Ocean larva stage duration reduced by 19% (IBM)

MeHg

- Fecundity is reduced by 33% (Lab)
- Egg survival is reduced by 45% (Lab)
- Ocean larva survival reduced by 86% (IBM)
- Ocean larva stage duration reduced by 4% (IBM)

Simulation results

Conclusions

Methods:

- regression tree and IBM relatively new
- expansion of classic matrix model time steps and regions
- uncertainty and stochasticity embraced

Physiological model:

- relate biomarker to ecological endpoint of yolk (fecundity)
- evaluate biomarkers and multiple stressors in a dynamic system

Statistical to IBM to Matrix models:

- laboratory and sublethal effects can be scaled to population level
- "hundredths of seconds to hundreds of years"